Planificación Primero en Entrar-Primero en Salir (FIFO, First In First Out)
Cuando se tiene que elegir a qué proceso asignar la CPU se escoge al que llevara más tiempo listo. El proceso se mantiene en la CPU hasta que se bloquea voluntariamente.
La ventaja de este algoritmo es su fácil implementación, sin embargo, no es válido para entornos interactivos ya que un proceso de mucho cálculo de CPU hace aumentar el tiempo de espera de los demás procesos . Para implementar el algoritmo (ver figura 2) sólo se necesita mantener una cola con los procesos listos ordenada por tiempo de llegada. Cuando un proceso pasa de bloqueado a listo se sitúa el último de la cola.
En a) el proceso P7 ocupa la CPU, los procesos P2, P4 y P8 se mantienen en la lista de preparados. En b) P7 se bloquea (ya sea al realizar una E/S, una operación WAIT sobre un semáforo a cero u otra causa) y P2 pasa a ocupar la CPU. En c) ocurre un evento (finalización de la operación de E/S, operación SIGNAL, ...) que desbloquea a P7, esto lo vuelve listo, pasando al final de la cola de procesos listos.
Algunas de las características de este algoritmo es que es no apropiativo y justo en el sentido formal, aunque injusto en el sentido de que: los trabajos largos hacen esperar a los cortos y los trabajos sin importancia hacen esperar a los importantes. Por otro lado es predecible pero no garantiza buenos tiempos de respuesta y por ello se emplea como esquema secundario.
Este es uno de los algoritmos más antiguos, sencillos y equitativos en el reparto de la CPU entre los procesos, muy válido para entornos de tiempo compartido. Cada proceso tiene asignado un intervalo de tiempo de ejecución, llamado cuantum o cuanto. Si el proceso agota su cuantum de tiempo, se elige a otro proceso para ocupar la CPU. Si el proceso se bloquea o termina antes de agotar su cuantum también se alterna el uso de la CPU. El round robin es muy fácil de implementar. Todo lo que necesita el planificador es mantener una lista de los procesos listos, como se muestra en la figura 6.2.
En esta figura en a) el proceso P7 ocupa la CPU. En b) P7 se bloquea pasando P2 a ocupar la CPU. En c) P2 agota su cuantum con lo que pasa al final de la lista y P4 ocupa la CPU. La figura 4 representa un ejemplo más largo de la ocupación de la CPU utilizando el algoritmo round robin.
Este algoritmo presupone la existencia de un reloj en el sistema. Un reloj es un dispositivo que genera periódicamente interrupciones. Esto es muy importante, pues garantiza que el sistema operativo (en concreto la rutina de servicio de interrupción del reloj) coge el mando de la CPU periódicamente. El cuantum de un proceso equivale a un número fijo de pulsos o ciclos de reloj. Al ocurrir una interrupción de reloj que coincide con la agotación del cuantum se llama al dispatcher.
Al igual que en el algoritmo FIFO las ráfagas se ejecutan sin interrupción, por tanto, sólo es útil para entornos batch. Su característica es que cuando se activa el planificador, éste elige la ráfaga de menor duración. Es decir, introduce una noción de prioridad entre ráfagas. Hay que recordar que en los entornos batch se pueden hacer estimaciones del tiempo de ejecución de los procesos.
La ventaja que presenta este algoritmo sobre el algoritmo FIFO es que minimiza el tiempo de finalización promedio, como puede verse en el siguiente ejemplo:
Ej: Supongamos que en un momento dado existen tres ráfagas listos R1, R2 y R3, sus tiempos de ejecución respectivos son 24, 3 y 3 ms. El proceso al que pertenece la ráfaga R1 es la que lleva más tiempo ejecutable, seguido del proceso al que pertenece R2 y del de R3. Veamos el tiempo medio de finalización (F) de las ráfagas aplicando FIFO y SJF:
FIFO F = (24 + 27 + 30) / 3 = 27 ms.
SJF F = (3 + 6 + 30) / 3 = 13 ms.
Se puede demostrar que este algoritmo es el óptimo. Para ello, consideremos el caso de cuatro ráfagas, con tiempos de ejecución de a, b, c y d. La primera ráfaga termina en el tiempo a, la segunda termina en el tiempo a+b, etc. El tiempo promedio de finalización es (4a+3b+2c+d)/4. Es evidente que a contribuye más al promedio que los demás tiempos, por lo que debe ser la ráfaga más corta, b la siguiente, y así sucesivamente. El mismo razonamiento se aplica a un número arbitrario de ráfagas.
No obstante, este algoritmo sólo es óptimo cuando se tienen simultáneamente todas las ráfagas. Como contraejemplo, considérense cinco ráfagas desde A hasta E, con tiempo se ejecución de 2, 4, 1, 1 y 1 respectivamente. Sus tiempos de llegada son 0, 0, 3, 3 y 3. Primero se dispone de A y B, puesto que las demás ráfagas no han llegado aún. Con el algoritmo SJF las ejecutaríamos en orden A, B, C, D, y E con un tiempo de finalización promedio de 4.6. Sin embargo, al ejecutarlas en orden B, C, D, E y A se tiene un promedio de finalización de 4.4.
Es similar al anterior, con la diferencia de que si un nuevo proceso pasa a listo se activa el dispatcher para ver si es más corto que lo que queda por ejecutar del proceso en ejecución. Si es así el proceso en ejecución pasa a listo y su tiempo de estimación se decrementa con el tiempo que ha estado ejecutándose.
En la figura 6.5 tenemos un ejemplo de funcionamiento del algoritmo en el que se observa cómo se penalizan las ráfagas largas (como en SJF). Un punto débil de este algoritmo se evidencia cuando una ráfaga muy corta suspende a otra un poco más larga, siendo más largo la ejecución en este orden al ser preciso un cambio adicional de proceso y la ejecución del código del planificador.
La importancia de conocer estos metodos de planificación de procesos es poder conocer como implementar el orden y la forma en que son asignados los recursos para obtener tiempos más eficientes en la asignación de recursos de la computadora.
ResponderEliminarUno de los que encuentro que es la mejor forma de administrar los recursos es el RR debido a que va asignando recursos de acuerdo al quantum establecido, por lo cual todos los procesos se van cumpliendo en ciclos.
Eso es todo compañeros
Grupo de El Informaticón